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Abstract
The Fisher and Burgers equations with finite memory transport, describing
reaction–diffusion and convection–diffusion processes, respectively have
recently attracted a lot of attention in the context of chemical kinetics,
mathematical biology and turbulence. We show here that they admit exact
solutions. While the speed of the travelling wavefront is dependent on the
relaxation time in the Fisher equation, memory effects significantly smoothen
out the shock wave nature of the Burgers solution, without any influence on the
corresponding wave speed. We numerically analyse the ansatz for the exact
solution and show that for the reaction–diffusion system the strength of the
reaction term must be moderate enough not to exceed a critical limit to allow
a travelling wave solution to exist for appreciable finite memory effect.

PACS numbers: 87.10.+e, 87.15.Vv, 87.23.Cc, 05.45.−a

1. Introduction

A number of nonlinear phenomena in physical [1], chemical [2] and biological processes [3, 4]
are described by the interplay of reaction and diffusion or by the interaction between convection
and diffusion. The well-known partial differential equations which govern a wide variety of
them are the Fisher [5] and Burgers [6] equations, respectively. While the Fisher equation
describes the dynamics of a field variable subject to spatial diffusion and logistic growth,
the Burgers equation provides the simplest nonlinear model for turbulence. Since spatial
diffusion is common to all these processes, Fick’s law forms the key element in the description
of transport. This description, however, gets significantly modified when the memory effects
are taken into account, i.e. when the dispersal of the particles is not mutually independent.
This implies that the correlation between the successive movements of the diffusing particles
may be understood as a delay in the flux for a given concentration gradient. Over the last
few years the analysis of memory effects in diffusive processes has attracted a lot of attention
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[7–23] in chemical kinetics, mathematical biology and allied areas. The focal theme lies
in the interesting travelling wavefront solutions and related issues which have been studied
extensively by several authors in various recent contexts, which include particularly the effect
of noise and stochasticity in the microscopic stochastic model [26], interface equations [27],
random fragmentation problem [28], nonuniform reaction rate distribution [29], autocatalytic
front [30], epidemic model [31] etc. The objective of the present paper is to show that the
Fisher equation and the Burgers equation with finite memory transport admit exact solutions.
We numerically clarify the nature of the ansatz wherever necessary and analyse the physical
implications of the solutions modified by relaxation effects and the related issues.

2. The Fisher and Burgers equations with finite memory transport

The starting point of our analysis is Cattaneo’s modification [24] of Fick’s law in the form:

J (x, t + τ ) = −D
∂u(x, t)

∂x
(1)

which takes care of adjustment of a concentration gradient at time t with a flux J (x, t + τ ) at a
later time (t + τ ) and τ being the delay time of the particles in adopting one definite direction
of propagation. Here u(x, t) denotes the field variable, and D is the diffusion coefficient of
the particles.

The population balance equation for the particles, on the other hand, takes into account
conservation of the equation supplemented by a source function kf (u) for the particles in the
form

∂u(x, t)

∂t
= −∂J

∂x
+ kf (u). (2)

The Fisher source function f (u) = u(1−u/K) has been the subject of wide interest in various
contexts. Here the first term in f (u) signifies linear growth followed by a nonlinear decay due
to the second one; k and K being the growth rate constant of the population and the carrying
capacity of the environment, respectively. In what follows we shall consider two specific cases
of the flux-gradient relation (1) for the Fisher and Burgers problem.

2.1. The Fisher equation with nonlinear damping and finite transport memory

We start with an expansion of J in equation (1) [25] up to first order in τ to obtain

τ
∂J (x, t)

∂t
+ J (x, t) = −D

∂u

∂x
. (3)

Here u(x, t) represents the density function. Differentiating (3) with respect to x and
differentiating (2) with respect to t and eliminating J from the resulting equations, one has

∂2u

∂t2
+ [β − kf ′(u)]

∂u

∂t
= βkf (u) + w2 ∂2u

∂x2
(4)

where we have used the following abbreviations

β = 1/τ and w2 = βD. (5)

Equation (4), a hyperbolic reaction–diffusion equation, is a generalization of the Fisher
equation for finite memory transport and nonlinear damping. It reduces to the standard
Fisher equation for τ = 0. Over the years the equation has drawn wide interest in the context
of travelling wave solutions in various problems [7–23]. For example, Gallay and Raugel
[8, 9] have studied the propagation of a front solution without the nonlinear term kf ′(u).
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Horsthemke has discussed some related issues in the problem of transport-driven instabilities
[16].

We now look for the travelling wave solutions of equation (4) of the form u(x, t) =
KU(x − ct) ≡ KU(z) with z = x − ct , where c > 0 is the speed of the nonlinear wave
(which, in general, is different from the linear wave w dictated by the medium subject to the
boundary conditions:

U(−∞) = 1 and U(+∞) = 0. (6)

Equation (4), therefore, after some algebra assumes the following form

∂2U

∂z2
+ [c(n − A)]

∂U

∂z
− 2AcU

∂U

∂z
+ nAmU(1 − U) = 0 = L(U) (say) (7)

where

m = w2 − c2 and n = β/m and A = k/m. (8)

Following Murray [4] we now introduce the ansatz,

U(z) = 1

[1 + a exp(bz)]s
(9)

as a solution to equation (7), where a, b and s are positive constants to be determined. Using
(9) in (7) we obtain after some algebra

[s(s + 1)a2b2 + nAma2 − s[c(n − A)]a2b − sa2b2] e2bz

+ [2aAmn − sab2 − s[c(n − A)]ab] ebz + nAm

− 2Acsab ebz(1 + a ebz)−s+1 − nAm(1 + a ebz)−s+2 = 0 = L(U). (10)

Now for L(U) = 0 for all z, the coefficients of e0, ebz, e2bz and e3bz within the appropriate
brackets must vanish identically. This implies that s = 0, 1 or 2. s = 0 is not a possible
solution since s is a positive constant by our starting assumption. For s = 1, the coefficients
of ebz and e2bz of equation (10) yield the following relations,

s(s + 1)b2 + nAm − s[c(n − A)]b − sb2 = 0 (11)

nAm − sb2 − s[c(n − A)]b − 2Acsb = 0 (12)

which can be solved to give b = 0 and b = −2Acs/(s + 1).
Again, since by initial assumption b is a positive constant, both the values of b are

unacceptable and s = 1 is not a correct choice.
For s = 2, equation (10) reduces to a form in which the coefficients of ebz, e2bz and e3bz

must satisfy the following relations

s(s + 1)b2 + 3nAm − 2s[c(n − A)]b − 2sb2 = 0 (13)

s(s + 1)b2 + nAm − s[c(n − A)]b − sb2 = 0 (14)

and

2nAm − sb2 − s[c(n − A)]b − 2Acsb = 0. (15)

From equation (13)–(15) we obtain

b2 = nAm

s(s + 1)
(16)
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and putting n = β/m,A = k/m from (8) and s = 2 in (16) we have

b2 = βk

6m
. (17)

Making use of (17) in (14) we obtain b in terms of c as follows:

c = 5kβ

6b(β − k)
(18)

b = 5

6c
(

1
k

− 1
β

) . (19)

The exact speed c of the travelling wave can be calculated from (17) and (19) using m =
w2 − c2 as

c =
√

βD[
1 + 6

25 (y − 1/y)2
]1/2 (20)

with y =
√

β

k
. It may be noted that the exact value of c thus derived is always greater than

cmin where

cmin = w[
1 + 1

4 (y − 1/y)2
]1/2 . (21)

Again in the diffusive limit, i.e. 1/β → 0 or 1/y → 0, the expression (20) results in the exact
Fisher value of c as c = 5

√
kD/

√
6. We note that this value of c is not too far from the cmin

which is given by cmin = 2
√

kD as pointed out earlier by Murray [4].
Having determined b and s one can write down the exact form of the travelling wave

solution (9) for the problem

U(z) = 1

/{
1 + a exp

[(
5

c
√

6
(

1
k

− 1
β

)
)

z√
6

]}2

. (22)

Furthermore, a can be determined from the usual condition U(z) = 1/2 for z = 0. This results
in a = (

√
2 − 1). The exact solution of the Fisher equation can be recovered from (22) in the

limit 1/β → 0 (i.e. 1/y → 0) using the Fisher value of c = 5
√

kD/
√

6. This is given by

U(z) = 1[
1 + (

√
2 − 1) exp

(√
k
D

z√
6

)]2 . (23)

We thus observe that the effect of memory or finite relaxation time enters the dynamics
of the reaction–diffusion system through its influence on the speed of the travelling wavefront
c. We emphasize here that for 1

β
= 0 equation (22) does not give the solution selected by the

front but is much steeper although the speed is very close to the selected one.
It is pertinent to point out that although exact, the travelling wave solution (22) does not

exhaust the possibility of other solutions. This was noted earlier by Murray [4] in the context
of the Fisher equation without memory effect which is a parabolic differential equation. For
an understanding of the nature of the travelling wave solution where β = (1/τ) is a new
element of the present theory, we carry out a numerical investigation of equation (4) using the
finite difference method to solve the boundary value problem. The initial condition to integrate
numerically is that the front is at rest at t = 0. We fix the value of the diffusion coefficient D =
1.0 for the entire treatment. In order to allow the variation of τ for a fixed value of k, we have
kept k at 0.6. For a higher value of k, i.e. where the reaction term dominates, τ must be chosen
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Figure 1. A plot of travelling wave solutions for different values of relaxation time τ (= 1
β
) for

k = 0.6 and D = 1.0. The solid lines are due to numerical simulations of equation (4) and the
dotted lines are the analytic results (22). (a) τ = 0.2, (b) τ = 0.4 (c) τ = 0.6 and (d ) τ = 0.0
(units are arbitrary).
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Figure 2. A plot of the speed c of the travelling wavefront solution versus relaxation time τ

(analytical, dotted line; numerical, solid line) for D = 1.0, k = 0.6 (units are arbitrary).

appropriately over a range to generate numerically stable travelling wavefront solution. The
interplay of β and k will be considered in more detail in the later part of this section.

In figure 1 we compare the analytical (dotted) and the numerical (solid) solutions
corresponding to (22) and (4), respectively, for different values of τ . From our analysis
it is apparent that they agree fairly well for τ roughly in the range between 0.1 and 0.5. In
figure 1(d ) we present the result for τ = 0, which corresponds to the typical Fisher case.
The analytical curve is marginally steeper than the numerical one. In figure 2 we compare
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the speed of the travelling wavefront computed numerically from (4) with that obtained
analytically following (20) for several values of τ . It follows that they agree reasonably well
when τ � k, i.e. in the range 0.1–0.5. As τ approaches zero the analytical value of c becomes
lower than the numerical one. For higher values of τ the disagreement between analytical and
numerical values of c grows rapidly.

The above numerical observations suggest that there is a strong interplay of k and τ (or β)
in the dynamics so far as the form and stability of the travelling wavefront solution is concerned.
To explore this aspect more clearly we now carry out an asymptotic analysis of the problem.
To this end we return to equation (7) subject to boundary condition (6). Following Murray
we choose the perturbation parameter ε = 1/c2 and look for the asymptotic solution for
0 < ε � 1 by introducing a change of variable ξ = z

c
= ε1/2z and U(z) = g(ξ). With these

transformations equations (7) and (6), therefore, reduce to

ε
d2g

dξ2
+ (n − A + 2Ag)

dg

dξ
+ mnAg(1 − g) = 0 (24)

and

g(−∞) = 1 g(+∞) = 0 (25)

respectively. ε in the highest derivative in equation (24) identifies it as a singular perturbation
problem.

Making use of a regular perturbation series in ε

g(ξ; ε) = g0(ξ) + εg1(ξ) + · · · (26)

in (24) we obtain after equating the appropriate powers of ε

(n − A + 2Ag0)
dg0

dξ
= −mnAg0(1 − g0) O(1) (27)

and

(n − A + 2Ag0)
dg1

dξ
+

d2g0

dξ2
+ 2Ag1

dg0

dξ
+ mnAg1(1 − 2g0) = 0 O(ε). (28)

The lowest order equation (27) when integrated yields

ln

{
(g0)

β−k

(1 − g0)β+k

}
= −βkξ + βkl (29)

where l is a constant of integration. Since we are interested in the solution in the vicinity of
z = 0, i.e. ξ = 0 for which we put g0(ξ) = 1/2, we obtain

l = 1

βk
ln

{(
1
2

)β−k(
1
2

)β+k

}
. (30)

Equation (29) precludes the possibility of an explicit solution for g0(ξ). Depending on β and
k we therefore consider three different cases:

(i) β � k (or τ � k)
We have from (30) l = 0 and (29) reduces to

g0(ξ) = (1 + exp(kξ))−1 or U(z) = (1 + exp(kz/c))−1 + O(ε). (31)

This is the standard asymptotic solution for U(z) for which the effect of memory is
negligible.
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(ii) β ≈ k (i.e. τ ≈ k)
We obtain similarly from (29) and (30)

g0(ξ) =
(

1 − exp(kξ/2)

2

)
or U(z) =

(
1 − exp((kz)/(2c))

2

)
+ O(ε). (32)

When both β and k are small compared to 1 and the exponential term in (32) is small, it
is easy to put the O(1) term approximately in the form of (31) as

U(z) ≈
(

1 +
exp((kz)/(2c))

2

)−1

. (33)

(iii) β � k (i.e. τ � k)
We obtain

g0(ξ) = 1 ± √
1 − exp(βξ)

2
+ O(ε). (34)

The form of this solution is generically different from those of (32) and (31) since it is
independent of k.

We now employ the above asymptotic solutions to understand the relation between the
steepness of the curve and the speed of propagation and the correlation time τ . Since the
negative gradient at z = 0 using the solutions (31), (32) and (34) gives the steepness (s) of
the solutions, we have

−U ′(0) = s = k

4c
β � k

−U ′(0) = s = k

9c
β 	 k

−U ′(0) = s = β

4c
β � k.

The above relations suggest that steepness goes as ∼1/c, and around β 	 k the steepness
is lower than that for the first case (β � k). This makes the analytical solution in this region
less steep and brings it closer to the numerical one as well as to the asymptotic solution. For
large τ (i.e. β � k) the solution being independent of k tends to differ from the numerical one
appreciably.

The three cases discussed above show that monotonic solutions satisfying U(−∞) = 1
and U(∞) = 0 for finite wave speed (c � cmin) exist for the cases (i) and (ii), i.e. when τ is
short but finite; τ � k. The assertion of this asymptotic analysis is in clear agreement with
our numerical simulation and our choice of a smaller value of k as discussed earlier.

The aforesaid analysis clearly demonstrates that although the nature of the partial
differential equation changes from parabolic to hyperbolic type due to the inclusion of
relaxation time, the Fisher equation can be solved by the Murray ansatz [4] to derive the
exact wave speed and the travelling wavefront solution for a suitable range of relaxation times
τ allowed by the strength of the reaction term. A compromise between the exact and the
numerical solutions can be obtained for relatively small reaction terms. The method can be
extended further to study other density-dependent diffusive processes.

2.2. The Burgers equation with finite memory transport

The Burgers equation [6] is a simple model of turbulence which illustrates an interaction
between convection and diffusion. The convection incorporates nonlinearity in the dynamics.
To include the finite memory effect we proceed as follows:
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We start with the following functional relation between flux J (x, t + τ ) at a time t + τ and
the field variable u(x, t) and its gradient term at an earlier time t;

J (x, t + τ ) = 1

2
u2(x, t) − γ

∂u(x, t)

∂x
(35)

where γ is a constant. Expanding J again up to first order in τ and differentiating the resulting
equation with respect to x followed by differentiation of equation (2) for k = 0 (i.e. in the
absence of any source term) with respect to time t and elimination of J as done in the last
section, we obtain

∂u

∂t
+ u

∂u

∂x
− τ

∂2u

∂t2
= γ

∂2u

∂x2
. (36)

For τ = 0 equation (36) assumes the form of the classical Burgers equation [1, 6] when u(x, t)

and γ are identified as the velocity field and kinematic viscosity, respectively.
We now seek a travelling wave solution of the Burgers equation with memory (36) in the

form U(z) = u(x − ct), z = x − ct , where c is again the wave speed to be determined. This
results in the following equation:

−
(

c2

β
+ γ

)
∂2U

∂z2
+ U

∂U

∂z
− c

∂U

∂z
= 0 (37)

where β = 1/τ .
We now impose the bound condition on U(z) that it asymptotically tends to constant

values u1 as z → −∞ and u2 as z → +∞ and u1 > u2.
A direct integration of (37) yields

∂U

∂z
= 1

2
(

c2

β
+ γ

) (U 2 − 2cU − 2A) (38)

where A is the integration constant. If u1 and u2 are the roots of the quadratic equation
U 2 − 2cU − 2A = 0, then the wave speed c and the constant A can be obtained as

c = u1 + u2

2
and A = −1

2
u1u2. (39)

Equation (38) can then be rewritten in the form

2

(
c2

β
+ γ

)
∂U

∂z
= (U − u1)(U − u2) (40)

to integrate to obtain finally

U(z) = 1

2
(u1 + u2) − 1

2
(u1 − u2) tanh

[ z

4δ

]
(41)

where δ is given by

δ =
(

c2

β
+ γ

u1 − u2

)
. (42)

The above analysis shows that the shape of the wave form is not only affected by kinematic
viscosity γ but also by an additional contribution c2/β due to finite relaxation time τ (=1/β)

such that (c2/β) + γ behaves as the effective kinematic viscosity. It is thus apparent that the
balance between the steepening effect of the convection as well as the smoothing effect due
to kinematic viscosity is enhanced by the presence of the wave speed dependent term c2/β.
Thus although the wave speed c[(u1 + u2)/2] itself remain unaffected by the finite memory
effect in contrast to our earlier case of the Fisher equation, the transmission layer thickness
‘δ’—which is a measure of shock thickness—increases for higher speed c and relaxation time
τ . This implies that as the wave moves faster, the shock smooths out more and more so that
the speed dependence of thickness δ makes the dynamics self-regulating in the problem of
interaction between convection and diffusion.
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3. Conclusions

The existence of relaxation or delay time is an important feature in reaction–diffusion
and convection–diffusion systems. In this paper we have shown that two prototypical
representatives of these systems, a generalized Fisher equation and the Burgers equation,
can be solved exactly for finite arbitrary delay time using conventional methods. While the
wave speed is significantly modified in the Fisher problem for finite memory transport, the
speed of the travelling wave in the corresponding Burgers problem remains unaffected, delay
time being effective in smoothing out the shock-wave nature of the travelling wave. We
also establish numerically that for the reaction–diffusion system the strength of the reaction
term must not exceed a critical limit to allow travelling wavefront solutions to exist for
appreciable memory or relaxation effect. In view of the fact that the studies on reaction–
diffusion and convection–diffusion with finite memory transport have been applied to forest
fire [21] and population growth models [14], Neolithic transitions [22] and in several other
areas under various approximate schemes [10–13, 15–20], we believe that the present exact
solutions for the generalized Fisher and Burgers problems are very much pertinent in this
context.
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